Compare commits
3 Commits
561b2f70a2
...
main
Author | SHA1 | Date | |
---|---|---|---|
0b23964d25 | |||
aebc157507 | |||
248e8dd073 |
232
control.py
232
control.py
@ -44,24 +44,27 @@ CONTROLLER_MODE = xbox.initialized
|
||||
xbox.mode_count = 5
|
||||
|
||||
neutral_position = np.array([
|
||||
[0.1, 0.16, -0.15],
|
||||
[-0.1, 0.16, -0.15],
|
||||
[-0.2, -0.00, -0.15],
|
||||
[-0.1, -0.16, -0.15],
|
||||
[0.1, -0.16, -0.15],
|
||||
[0.2, 0, -0.15]
|
||||
[0.08, 0.16, -0.12],
|
||||
[-0.08, 0.16, -0.12],
|
||||
[-0.2, -0.00, -0.12],
|
||||
[-0.08, -0.16, -0.12],
|
||||
[0.08, -0.16, -0.12],
|
||||
[0.2, 0, -0.12]
|
||||
])
|
||||
|
||||
REAL = 0
|
||||
|
||||
# Robot setup
|
||||
if REAL == 1:
|
||||
portHandler = PortHandler("/dev/ttyUSB0")
|
||||
try:
|
||||
portHandler = PortHandler("/dev/ttyUSB0")
|
||||
except:
|
||||
portHandler = PortHandler("/dev/ttyUSB1")
|
||||
|
||||
packetHandler = PacketHandler(1.0)
|
||||
|
||||
portHandler.openPort()
|
||||
x = portHandler.setBaudRate(1000000)
|
||||
print(x)
|
||||
portHandler.setBaudRate(1000000)
|
||||
ADDR_GOAL_POSITION = 30
|
||||
|
||||
ids = []
|
||||
@ -71,17 +74,24 @@ if REAL == 1:
|
||||
print(f"Found AX-12 with id: {id}")
|
||||
ids.append(id)
|
||||
time.sleep(0.01)
|
||||
if len(ids) != 18:
|
||||
legsLogger.error("Not all motor found. Press enter to continue")
|
||||
input()
|
||||
|
||||
|
||||
# Done
|
||||
|
||||
def interpol2(point2, point1, t):
|
||||
"""
|
||||
Linear interpolation between two points in space
|
||||
"""
|
||||
x1, y1, z1 = point1
|
||||
x2, y2, z2 = point2
|
||||
return t * x1 + (1 - t) * x2, t * y1 + (1 - t) * y2, t * z1 + (1 - t) * z2
|
||||
|
||||
|
||||
def get_current_step(t, step_duration, movement_duration):
|
||||
"""
|
||||
helper function used to calculate the current step of the movement i.e. what part of the movement.
|
||||
"""
|
||||
time_passed = 0
|
||||
for i in range(len(step_duration)):
|
||||
time_passed += step_duration[i]
|
||||
@ -90,6 +100,9 @@ def get_current_step(t, step_duration, movement_duration):
|
||||
|
||||
|
||||
def get_current_step_advancement(t, movement_duration, step_duration, current_step):
|
||||
"""
|
||||
helper function used to calculate the current advancement of the movement step i.e. the percentage of progression of said movement.
|
||||
"""
|
||||
current_step = get_current_step(t, step_duration, movement_duration)
|
||||
t = t % movement_duration
|
||||
for i in range(0, current_step):
|
||||
@ -99,6 +112,7 @@ def get_current_step_advancement(t, movement_duration, step_duration, current_st
|
||||
|
||||
def inverse(x, y, z):
|
||||
"""
|
||||
Calculate the angle of each motor to have the end of the feet at a specified position
|
||||
"""
|
||||
# Dimensions (m)
|
||||
z += l1v
|
||||
@ -106,7 +120,6 @@ def inverse(x, y, z):
|
||||
theta0 = atan2(y, x)
|
||||
|
||||
l = sqrt((sqrt(x ** 2 + y ** 2) - l1) ** 2 + z ** 2)
|
||||
# l = sqrt((x - l1h*cos(theta0)) ** 2 + (y - l1h*sin(theta0)) ** 2 + (z + l1v) ** 2)
|
||||
|
||||
param2 = -1 * (-(l ** 2) + l2 ** 2 + l3 ** 2) / (2 * l2 * l3)
|
||||
|
||||
@ -123,15 +136,13 @@ def inverse(x, y, z):
|
||||
|
||||
theta1 = acos(param1) + asin(z / l)
|
||||
|
||||
# return [-theta0, theta1, theta2]
|
||||
angle1 = atan(l2v / l2h)
|
||||
return [-theta0, theta1 + angle1, theta2 + angle1 - pi / 2 + atan(l3h / l3v)]
|
||||
# return [0, angle1 , angle1 -pi/2 + atan(l3h/l3v)]
|
||||
|
||||
|
||||
def legs(targets_robot):
|
||||
"""
|
||||
takes a list of target and offsets it to be in the legs referential
|
||||
takes a list of target and offsets them to be in the legs referential
|
||||
"""
|
||||
|
||||
targets = [0] * 18
|
||||
@ -160,7 +171,72 @@ def legs(targets_robot):
|
||||
return targets
|
||||
|
||||
|
||||
def normalize(matrix, slider_max, speed):
|
||||
return (matrix / slider_max) * speed
|
||||
|
||||
|
||||
counter = 0
|
||||
|
||||
|
||||
def convert_to_robot(positions):
|
||||
"""
|
||||
Send a robot position to the real robot.
|
||||
"""
|
||||
global counter
|
||||
counter += 1
|
||||
if counter % 2 != 0:
|
||||
return
|
||||
index = [
|
||||
11, 12, 13,
|
||||
41, 42, 43,
|
||||
21, 22, 23,
|
||||
51, 52, 53,
|
||||
61, 62, 63,
|
||||
31, 32, 33]
|
||||
dir = [-1] * 18
|
||||
|
||||
for i in range(len(positions)):
|
||||
value = int(512 + positions[i] * 150 * dir[i])
|
||||
packetHandler.write2ByteTxOnly(portHandler, index[i], ADDR_GOAL_POSITION, value)
|
||||
|
||||
|
||||
def walk(t, sx, sy, sr):
|
||||
"""
|
||||
Choose the algorithm depending on input of xbox controller
|
||||
"""
|
||||
xboxdata = xbox.get_data()
|
||||
if xbox.initialized:
|
||||
max_slider = 0.200
|
||||
controllerLogger.debug(xboxdata)
|
||||
if xbox.mode == 0:
|
||||
positions = static()
|
||||
elif xbox.mode == 1:
|
||||
positions = jump(xboxdata["y2"])
|
||||
elif xbox.mode == 2:
|
||||
positions = dino_naive(t, max_slider * xboxdata["y1"], max_slider * xboxdata["x1"],
|
||||
max_slider * xboxdata["y2"],
|
||||
max_slider * xboxdata["x2"], max_slider * (xboxdata["r2"] + 1))
|
||||
elif xbox.mode == 3:
|
||||
positions = naive_walk(t, max_slider * xboxdata["x1"], max_slider * xboxdata["y1"])
|
||||
elif xbox.mode == 4:
|
||||
positions = walk_v2(t, max_slider * xboxdata["y1"], -1 * max_slider * xboxdata["x1"],
|
||||
xboxdata["x2"] * max_slider,
|
||||
max_slider * xboxdata["y2"])
|
||||
# print(positions)
|
||||
if REAL == 1:
|
||||
convert_to_robot(positions)
|
||||
|
||||
return positions
|
||||
else:
|
||||
return walk_v2(t, sx, sy, sr, None)
|
||||
|
||||
|
||||
# different move algorithm
|
||||
|
||||
def naive_walk(t, speed_x, speed_y):
|
||||
"""
|
||||
First version of walk, using triangle for each step
|
||||
"""
|
||||
slider_max = 0.200
|
||||
|
||||
real_position = np.copy(neutral_position)
|
||||
@ -226,89 +302,25 @@ def naive_walk(t, speed_x, speed_y):
|
||||
return legs(real_position)
|
||||
|
||||
|
||||
def normalize(matrix, slider_max, speed):
|
||||
return (matrix / slider_max) * speed
|
||||
|
||||
|
||||
counter = 0
|
||||
|
||||
|
||||
def convert_to_robot(positions):
|
||||
global counter
|
||||
counter += 1
|
||||
if counter % 2 != 0:
|
||||
return
|
||||
print(positions)
|
||||
index = [
|
||||
11, 12, 13,
|
||||
41, 42, 43,
|
||||
21, 22, 23,
|
||||
51, 52, 53,
|
||||
61, 62, 63,
|
||||
31, 32, 33]
|
||||
dir = [-1] * 18
|
||||
|
||||
for i in range(len(positions)):
|
||||
value = int(512 + positions[i] * 150 * dir[i])
|
||||
packetHandler.write2ByteTxOnly(portHandler, index[i], ADDR_GOAL_POSITION, value)
|
||||
# packetHandler.writeTxOnly(portHandler, index[i], ADDR_GOAL_POSITION, 2,
|
||||
# bytes(value))
|
||||
|
||||
|
||||
def stand(x1, y1, x2, y2):
|
||||
return [
|
||||
0, 0, 0,
|
||||
0, 0, 0,
|
||||
x1, 0, 0,
|
||||
0, -0.5, 0,
|
||||
0, -0.5, 0,
|
||||
y1, 0, 0
|
||||
]
|
||||
|
||||
|
||||
def walk(t, sx, sy, sr):
|
||||
xboxdata = xbox.get_data()
|
||||
val = xboxdata["x1"]
|
||||
|
||||
max_slider = 0.200
|
||||
controllerLogger.debug(xboxdata)
|
||||
if xbox.mode == 0:
|
||||
positions = static()
|
||||
elif xbox.mode == 1:
|
||||
positions = jump(xboxdata["y2"])
|
||||
elif xbox.mode == 2:
|
||||
positions = dino_naive(t, max_slider * xboxdata["y1"], max_slider * xboxdata["x1"], max_slider * xboxdata["y2"],
|
||||
max_slider * xboxdata["x2"], max_slider * (xboxdata["r2"] + 1))
|
||||
elif xbox.mode == 3:
|
||||
positions = naive_walk(t, max_slider * xboxdata["x1"], max_slider * xboxdata["y1"])
|
||||
elif xbox.mode == 4:
|
||||
positions = dev(t, max_slider * xboxdata["y1"], -1 * max_slider * xboxdata["x1"], xboxdata["x2"] * max_slider,
|
||||
max_slider * xboxdata["y2"])
|
||||
elif xbox.mode == 5:
|
||||
positions = stand(xboxdata["x1"], xboxdata["y1"], xboxdata["x2"], xboxdata["y2"])
|
||||
|
||||
print(positions)
|
||||
if REAL == 1:
|
||||
convert_to_robot(positions)
|
||||
|
||||
return positions
|
||||
|
||||
|
||||
def static():
|
||||
"""
|
||||
Function to have the robot stand at the neutral position
|
||||
"""
|
||||
return legs(neutral_position)
|
||||
|
||||
|
||||
# Walk V2
|
||||
def dev(t, speed_x, speed_y, speed_r, y2):
|
||||
def walk_v2(t, speed_x, speed_y, speed_r, y2):
|
||||
"""
|
||||
x1: speed along the x-axis
|
||||
y1: speed along the y-axis
|
||||
x2: rotational speed along the z-axis
|
||||
Second version of the walking algorithm, using circle for each leg
|
||||
This is the main algorithm.
|
||||
"""
|
||||
max_dist = 0.3
|
||||
print(speed_r)
|
||||
|
||||
def get_rotation_center(speed_x, speed_y, theta_point):
|
||||
"""
|
||||
Helper function that calculate the center of rotation of the robot based on the current parameters
|
||||
"""
|
||||
norm = sqrt(speed_x ** 2 + speed_y ** 2)
|
||||
|
||||
r = 1000 if theta_point == 0 else norm / theta_point
|
||||
@ -318,15 +330,13 @@ def dev(t, speed_x, speed_y, speed_r, y2):
|
||||
return 0, 0
|
||||
|
||||
center_x, center_y = get_rotation_center(speed_x, speed_y, speed_r)
|
||||
|
||||
legsLogger.debug(f"rotation center: center_x: {center_x}, center_y: {center_y}")
|
||||
|
||||
real_position = np.copy(neutral_position)
|
||||
|
||||
movement_z = np.array([
|
||||
[0, 0, 0.02],
|
||||
[0, 0, -0.01],
|
||||
[0, 0, -0.01]
|
||||
[0, 0, 0.03],
|
||||
[0, 0, -0.02],
|
||||
[0, 0, -0.02]
|
||||
])
|
||||
|
||||
step_duration = np.array([0.15, 0.3, 0.15])
|
||||
@ -406,6 +416,9 @@ def dev(t, speed_x, speed_y, speed_r, y2):
|
||||
|
||||
|
||||
def jump(sy):
|
||||
"""
|
||||
Make the robot jump (at least we wished)
|
||||
"""
|
||||
offset = np.array([
|
||||
[0, 0, -0.15],
|
||||
[0, 0, -0.15],
|
||||
@ -418,8 +431,10 @@ def jump(sy):
|
||||
return legs(neutral_position + offset)
|
||||
|
||||
|
||||
# based on walk V1
|
||||
def dino_naive(t, speed_x, speed_y, hz, hy, hx):
|
||||
"""
|
||||
based on walk naive, but with a head and a tail
|
||||
"""
|
||||
slider_max = 0.200
|
||||
|
||||
real_position = np.copy(neutral_position)
|
||||
@ -492,34 +507,5 @@ def dino_naive(t, speed_x, speed_y, hz, hy, hx):
|
||||
return legs(real_position)
|
||||
|
||||
|
||||
def robot_input():
|
||||
print("Send motors wave (press enter)")
|
||||
input()
|
||||
for id in ids:
|
||||
packetHandler.write2ByteTxRx(portHandler, id, ADDR_GOAL_POSITION, 512)
|
||||
input()
|
||||
angle = [512, 624, 400, 512, 624, 400]
|
||||
for id in range(1, 7):
|
||||
packetHandler.write2ByteTxRx(portHandler, id * 10 + 1, ADDR_GOAL_POSITION, angle[id - 1])
|
||||
input()
|
||||
|
||||
# Dino mode
|
||||
packetHandler.write2ByteTxRx(portHandler, 12, ADDR_GOAL_POSITION, 650)
|
||||
packetHandler.write2ByteTxRx(portHandler, 42, ADDR_GOAL_POSITION, 650)
|
||||
packetHandler.write2ByteTxRx(portHandler, 43, ADDR_GOAL_POSITION, 400)
|
||||
|
||||
input()
|
||||
for id in ids:
|
||||
packetHandler.write2ByteTxRx(portHandler, id, ADDR_GOAL_POSITION, 512)
|
||||
# t = 0.0
|
||||
# while True:
|
||||
# print("Send motors wave (press enter)")
|
||||
# angle = 512 + int(50 * np.sin(t))
|
||||
# print(angle)
|
||||
# packetHandler.write2ByteTxRx(portHandler, 53, ADDR_GOAL_POSITION, angle)
|
||||
# time.sleep(0.001)
|
||||
# t += 0.01
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("N'exécutez pas ce fichier, mais simulator.py")
|
||||
|
4
xbox.py
4
xbox.py
@ -15,9 +15,9 @@ class Xbox:
|
||||
|
||||
if len(self.controllers) == 0:
|
||||
self.logger.critical("No controllers detected. Can't initialize remote control.")
|
||||
self.initialized = True
|
||||
else:
|
||||
self.initialized = False
|
||||
else:
|
||||
self.initialized = True
|
||||
self.data = {"x1": 0, "x2": 0, "y1": 0, "y2": 0, "up": 0, "down": 0, "left": 0, "right": 0, "r1": 0, "r2": 0,
|
||||
"r3": 0,
|
||||
"l1": 0, "l2": 0, "l3": 0}
|
||||
|
Reference in New Issue
Block a user