365 lines
11 KiB
Python
365 lines
11 KiB
Python
import logging
|
|
import math
|
|
import numpy as np
|
|
from math import *
|
|
from logs import *
|
|
from xbox import *
|
|
import time
|
|
|
|
# DEBUG
|
|
LEGS_LOG_LEVEL = logging.INFO
|
|
CONTROLLER_LOG_LEVEL = logging.INFO
|
|
# Variables configurations
|
|
|
|
l1h = 0.049
|
|
l1v = 0.032
|
|
l1 = l1h # this is not the real distance as it's not the one needed to calculate position.
|
|
|
|
# length between motor 2 and motor 3.
|
|
l2h = 0.0605
|
|
l2v = 0.02215
|
|
l2 = sqrt(l2h ** 2 + l2v ** 2)
|
|
|
|
# length between motor 3 and end of the leg.
|
|
l3h = 0.012
|
|
l3v = 0.093
|
|
l3 = sqrt(l3h ** 2 + l3v ** 2)
|
|
|
|
# offset of the 'head', the legs isolated at each end.
|
|
tete_x = 0.095
|
|
|
|
# offset of the legs at the side.
|
|
patte_y = 0.032
|
|
patte_x = 0.079
|
|
num_patte = 6
|
|
|
|
# Logs functions
|
|
legsLogger = setup_logger("legs", LEGS_LOG_LEVEL)
|
|
controllerLogger = setup_logger("Controller", CONTROLLER_LOG_LEVEL)
|
|
|
|
# Initialize controller
|
|
xbox = Xbox(controllerLogger)
|
|
CONTROLLER_MODE = xbox.initialized
|
|
|
|
|
|
def interpol2(point2, point1, t):
|
|
x1, y1, z1 = point1
|
|
x2, y2, z2 = point2
|
|
return t * x1 + (1 - t) * x2, t * y1 + (1 - t) * y2, t * z1 + (1 - t) * z2
|
|
|
|
|
|
def inverse(x, y, z):
|
|
"""
|
|
"""
|
|
# Dimensions (m)
|
|
z += l1v
|
|
|
|
theta0 = atan2(y, x)
|
|
|
|
l = sqrt((sqrt(x ** 2 + y ** 2) - l1) ** 2 + z ** 2)
|
|
# l = sqrt((x - l1h*cos(theta0)) ** 2 + (y - l1h*sin(theta0)) ** 2 + (z + l1v) ** 2)
|
|
|
|
param2 = -1 * (-(l ** 2) + l2 ** 2 + l3 ** 2) / (2 * l2 * l3)
|
|
|
|
if param2 > 1 or param2 < -1:
|
|
print("\033[94m" + f"Tentative d'acces a une position impossible (param2) ({x}, {y}, {z})" + "\033[0m")
|
|
param2 = 1 if param2 > 1 else -1
|
|
|
|
theta2 = acos(param2)
|
|
|
|
param1 = (-l3 ** 2 + l2 ** 2 + l ** 2) / (2 * l2 * l)
|
|
if param1 > 1 or param1 < -1:
|
|
print("\033[94m" + f"Tentative d'acces a une position impossible (param1) ({x}, {y}, {z})" + "\033[0m")
|
|
param1 = 1 if param1 > 1 else -1
|
|
|
|
theta1 = acos(param1) + asin(z / l)
|
|
|
|
# return [-theta0, theta1, theta2]
|
|
angle1 = atan(l2v / l2h)
|
|
return [-theta0, theta1 + angle1, theta2 + angle1 - pi / 2 + atan(l3h / l3v)]
|
|
# return [0, angle1 , angle1 -pi/2 + atan(l3h/l3v)]
|
|
|
|
|
|
def legs(targets_robot):
|
|
"""
|
|
takes a list of target and offsets it to be in the legs referential
|
|
"""
|
|
|
|
targets = [0] * 18
|
|
|
|
cos_val = [0, 0, -1, 0, 0, 1]
|
|
sin_val = [-1, -1, 0, 1, 1, 0]
|
|
|
|
offset_x = [-patte_x, -patte_x, -tete_x, -patte_x, -patte_x, -tete_x]
|
|
offset_y = [patte_y, -patte_y, 0, patte_y, -patte_y, 0]
|
|
|
|
for i in range(6):
|
|
target_x, target_y, target_z = targets_robot[i]
|
|
|
|
target_x_tmp = cos_val[i] * target_x - sin_val[i] * target_y
|
|
target_y = sin_val[i] * target_x + cos_val[i] * target_y
|
|
target_x = target_x_tmp
|
|
|
|
target_x += offset_x[i]
|
|
target_y += offset_y[i]
|
|
|
|
alpha, beta, gamma = inverse(target_x, target_y, target_z)
|
|
targets[3 * i] = alpha
|
|
targets[3 * i + 1] = beta
|
|
targets[3 * i + 2] = gamma
|
|
|
|
return targets
|
|
|
|
|
|
def walkV1(t, speed_x, speed_y, speed_rotation):
|
|
max_slider = 0.200
|
|
xboxdata = xbox.get_data()
|
|
print(xboxdata)
|
|
speed_x = max_slider * xboxdata["x1"]
|
|
speed_y = max_slider * xboxdata["y1"]
|
|
|
|
slider_max = 0.200
|
|
|
|
neutral_position = np.array([
|
|
[0.1, 0.15, -0.15],
|
|
[-0.1, 0.15, -0.15],
|
|
[-0.2, -0.00, -0.15],
|
|
[-0.1, -0.15, -0.15],
|
|
[0.1, -0.15, -0.15],
|
|
[0.2, 0, -0.15]
|
|
])
|
|
|
|
real_position = np.copy(neutral_position)
|
|
|
|
movement_x = np.array([
|
|
[0.00, 0, 0],
|
|
[0.04, 0, 0],
|
|
[-0.04, 0, 0],
|
|
])
|
|
|
|
movement_y = np.array([
|
|
[0.0, 0, 0],
|
|
[0, 0.04, 0],
|
|
[0, -0.04, 0],
|
|
])
|
|
|
|
movement_z = np.array([
|
|
[0, 0, 0.08],
|
|
[0, 0, -0.02],
|
|
[0, 0, -0.02]
|
|
])
|
|
|
|
# duration of each step of the movement
|
|
step_duration = np.array([0.05, 0.3, 0.05])
|
|
|
|
step_count = len(movement_z)
|
|
movement_duration = np.sum(step_duration)
|
|
|
|
assert len(
|
|
step_duration) == step_count, f"all movements steps must have a length, currently, {len(step_duration)}/{step_count} have them"
|
|
|
|
def get_current_step(t):
|
|
time_passed = 0
|
|
for i in range(len(step_duration)):
|
|
time_passed += step_duration[i]
|
|
if t % movement_duration < time_passed:
|
|
return i
|
|
|
|
def get_current_step_advancement(t):
|
|
current_step = get_current_step(t)
|
|
t = t % movement_duration
|
|
for i in range(0, current_step):
|
|
t -= step_duration[i]
|
|
return t / step_duration[current_step]
|
|
|
|
def get_next_step(t):
|
|
return floor((get_current_step(t) + 1) % step_count)
|
|
|
|
def rotate(patte):
|
|
return [1, -1, 0, -1, 1, 0][
|
|
patte] * movement_x # + [-1, 1, -1, 1][patte] * movement_y # mettre des 0 partout sur le Y fait une très belle rotation
|
|
|
|
def normalize(matrix, slider_max, speed):
|
|
return (matrix / slider_max) * speed
|
|
|
|
offsets = np.array([0, 1 / 3, 2 / 3, 0, 1 / 3, 2 / 3]) * movement_duration # offset between each leg
|
|
assert len(offsets) == num_patte, f"all offsets must be set, currently, {len(offsets)}/{num_patte} have them"
|
|
|
|
for patte in range(num_patte):
|
|
time = t + offsets[patte]
|
|
mov_index_start = get_current_step(time)
|
|
mov_index_end = get_next_step(time)
|
|
|
|
mov_start_x = normalize(movement_x[mov_index_start], slider_max, speed_x)
|
|
mov_end_x = normalize(movement_x[mov_index_end], slider_max, speed_x)
|
|
|
|
mov_start_y = normalize(movement_y[mov_index_start], slider_max, speed_y)
|
|
mov_end_y = normalize(movement_y[mov_index_end], slider_max, speed_y)
|
|
|
|
mov_start_z = movement_z[mov_index_start]
|
|
mov_end_z = movement_z[mov_index_end]
|
|
|
|
mov_start_rotate = normalize(rotate(patte)[mov_index_start], 0.5, speed_rotation)
|
|
mov_end_rotate = normalize(rotate(patte)[mov_index_end], 0.5, speed_rotation)
|
|
|
|
mov_start = neutral_position[patte] + mov_start_z + mov_start_x + mov_start_y + mov_start_rotate
|
|
mov_end = neutral_position[patte] + mov_end_z + mov_end_x + mov_end_y + mov_end_rotate
|
|
|
|
(real_position[patte][0],
|
|
real_position[patte][1],
|
|
real_position[patte][2]) = interpol2(mov_start, mov_end, get_current_step_advancement(time))
|
|
print(
|
|
f"[{patte}] [{get_current_step(time)}->{get_next_step(time)}], start: {mov_start}, end: {mov_end}, current ({real_position[patte][0]}, {real_position[patte][1]}, {real_position[patte][2]})")
|
|
|
|
return legs(real_position)
|
|
|
|
|
|
def translate(tx, ty, tz):
|
|
return np.array([
|
|
[1.0, 0.0, 0.0, tx],
|
|
[0.0, 1.0, 0.0, ty],
|
|
[0.0, 0.0, 1.0, tz],
|
|
[0.0, 0.0, 0.0, 1.0],
|
|
])
|
|
|
|
|
|
def Rx(alpha):
|
|
return np.array([
|
|
[1.0, 0.0, 0.0, 0.0],
|
|
[0.0, np.cos(alpha), -np.sin(alpha), 0.0],
|
|
[0.0, np.sin(alpha), np.cos(alpha), 0.0],
|
|
[0.0, 0.0, 0.0, 1.0],
|
|
])
|
|
|
|
|
|
def Ry(alpha):
|
|
return np.array([
|
|
[np.cos(alpha), 0.0, -np.sin(alpha), 0.0],
|
|
[0.0, 1.0, 0.0, 0.0],
|
|
[np.sin(alpha), 0.0, np.cos(alpha), 0.0],
|
|
[0.0, 0.0, 0.0, 1.0],
|
|
])
|
|
|
|
|
|
def Rz(alpha):
|
|
return np.array([
|
|
[np.cos(alpha), -np.sin(alpha), 0.0, 0.0],
|
|
[np.sin(alpha), np.cos(alpha), 0.0, 0.0],
|
|
[0.0, 0.0, 1.0, 0.0],
|
|
[0.0, 0.0, 0.0, 1.0],
|
|
])
|
|
|
|
|
|
# multiplication de matrices: @
|
|
# gauche: monde, droite: repere
|
|
|
|
def walkV2(t, speed_x, speed_y, speed_rotation):
|
|
def get_rotation_center(speed_x, speed_y, theta_point):
|
|
direction = np.array([-speed_y, speed_x])
|
|
return direction / max(0.001, theta_point)
|
|
|
|
x0, y0 = get_rotation_center(speed_x, speed_y, speed_rotation)
|
|
|
|
print(x0, y0)
|
|
|
|
"""
|
|
python simulator.py -m walk
|
|
|
|
Le but est d'intégrer tout ce que nous avons vu ici pour faire marcher le robot
|
|
|
|
- Sliders: speed_x, speed_y, speed_rotation, la vitesse cible du robot
|
|
- Entrée: t, le temps (secondes écoulées depuis le début)
|
|
speed_x, speed_y, et speed_rotation, vitesses cibles contrôlées par les sliders
|
|
- Sortie: un tableau contenant les 12 positions angulaires cibles (radian) pour les moteurs
|
|
"""
|
|
# t = t*speed_x * 20
|
|
num_patte = 4
|
|
slider_max = 0.200
|
|
|
|
neutral_position = np.array([
|
|
[-0.06, 0.06, -0.13],
|
|
[-0.06, -0.06, -0.13],
|
|
[0.06, -0.06, -0.13], # [0.15, 0.15, -0.01],
|
|
[0.06, 0.06, -0.13]
|
|
])
|
|
|
|
real_position = np.copy(neutral_position)
|
|
|
|
movement_z = np.array([
|
|
[0, 0, 0.02],
|
|
[0, 0, -0.01],
|
|
[0, 0, -0.01]
|
|
])
|
|
|
|
step_duration = np.array([0.05, 0.3, 0.05])
|
|
|
|
step_count = len(movement_z)
|
|
movement_duration = np.sum(step_duration)
|
|
|
|
assert len(
|
|
step_duration) == step_count, f"all movements steps must have a length, currently, {len(step_duration)}/{step_count} have them"
|
|
|
|
def get_current_step(t):
|
|
time_passed = 0
|
|
for i in range(len(step_duration)):
|
|
time_passed += step_duration[i]
|
|
if t % movement_duration < time_passed:
|
|
return i
|
|
|
|
def get_current_step_advancement(t):
|
|
current_step = get_current_step(t)
|
|
t = t % movement_duration
|
|
for i in range(0, current_step):
|
|
t -= step_duration[i]
|
|
return t / step_duration[current_step]
|
|
|
|
def get_next_step(t):
|
|
return floor((get_current_step(t) + 1) % step_count)
|
|
|
|
offsets = np.array([0, 0.5, 0, 0.5]) * movement_duration # offset between each leg
|
|
assert len(offsets) == num_patte, f"all offsets must be set, currently, {len(offsets)}/{num_patte} have them"
|
|
|
|
for patte in range(num_patte):
|
|
time = t + offsets[patte]
|
|
mov_index_start = get_current_step(time)
|
|
mov_index_end = get_next_step(time)
|
|
|
|
mov_start_z = movement_z[mov_index_start]
|
|
mov_end_z = movement_z[mov_index_end]
|
|
|
|
mov_start = neutral_position[patte] + mov_start_z
|
|
mov_end = neutral_position[patte] + mov_end_z
|
|
|
|
(real_position[patte][0],
|
|
real_position[patte][1],
|
|
real_position[patte][2]) = interpol2(mov_start, mov_end, get_current_step_advancement(time))
|
|
|
|
dthteta = speed_rotation * 2
|
|
|
|
theta = dthteta * (get_current_step_advancement(time) - 0.5)
|
|
# theta = 0
|
|
print(theta)
|
|
# rotating the vector
|
|
x1, y1 = real_position[patte][0], real_position[patte][1]
|
|
print(f"x1: {x1}, y1: {y1}")
|
|
x1t, y1t = x1 - x0, y1 - y0
|
|
x2t, y2t = x1t * cos(theta) + y1t * sin(theta), x1t * sin(theta) + y1t * cos(theta)
|
|
x2, y2 = x2t + x0, y2t + y0
|
|
print(f"x2: {x2}, y2: {y2}")
|
|
if mov_index_start == 1:
|
|
# theta += time
|
|
# xp = d * cos(theta) + real_position[patte][0]
|
|
real_position[patte][0] = x2
|
|
real_position[patte][1] = y2
|
|
|
|
# print(
|
|
# f"[{patte}] [{get_current_step(time)}->{get_next_step(time)}], start: {mov_start}, end: {mov_end}, current ({real_position[patte][0]}, {real_position[patte][1]}, {real_position[patte][2]})")
|
|
|
|
return legs(real_position)
|
|
|
|
|
|
walk = walkV1
|
|
|
|
if __name__ == "__main__":
|
|
print("N'exécutez pas ce fichier, mais simulator.py")
|