Compare commits
No commits in common. "90d08671d98e08e52619ebf1e2859b51829953e1" and "ed7915386d39177a4b43733157facc156894d71e" have entirely different histories.
90d08671d9
...
ed7915386d
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,2 +0,0 @@
|
|||||||
models
|
|
||||||
__pycache__
|
|
404
control.py
404
control.py
@ -1,81 +1,87 @@
|
|||||||
import logging
|
|
||||||
import math
|
import math
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from math import *
|
|
||||||
from logs import *
|
|
||||||
from xbox import *
|
|
||||||
import time
|
|
||||||
|
|
||||||
# DEBUG
|
|
||||||
LEGS_LOG_LEVEL = logging.INFO
|
def sandbox(t):
|
||||||
CONTROLLER_LOG_LEVEL = logging.INFO
|
"""
|
||||||
# Variables configurations
|
python simulator.py -m sandbox
|
||||||
|
|
||||||
|
Un premier bac à sable pour faire des expériences
|
||||||
|
|
||||||
|
La fonction reçoit le temps écoulé depuis le début (t) et retourne une position cible
|
||||||
|
pour les angles des 12 moteurs
|
||||||
|
|
||||||
|
- Entrée: t, le temps (secondes écoulées depuis le début)
|
||||||
|
- Sortie: un tableau contenant les 12 positions angulaires cibles (radian) pour les moteurs
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Par exemple, on envoie un mouvement sinusoidal
|
||||||
|
targets = [0] * 12
|
||||||
|
targets[0] = t ** 3
|
||||||
|
targets[1] = 0
|
||||||
|
targets[2] = 0
|
||||||
|
targets[3] = t ** 3
|
||||||
|
targets[4] = 0
|
||||||
|
targets[5] = 0
|
||||||
|
targets[6] = t ** 3
|
||||||
|
targets[7] = 0
|
||||||
|
targets[8] = 0
|
||||||
|
targets[9] = t ** 3
|
||||||
|
targets[10] = 0
|
||||||
|
targets[11] = 0
|
||||||
|
|
||||||
|
return targets
|
||||||
|
|
||||||
|
|
||||||
|
def direct(alpha, beta, gamma):
|
||||||
|
"""
|
||||||
|
python simulator.py -m direct
|
||||||
|
|
||||||
|
Le robot est figé en l'air, on ne contrôle qu'une patte
|
||||||
|
|
||||||
|
Reçoit en argument la cible (alpha, beta, gamma) des degrés de liberté de la patte, et produit
|
||||||
|
la position (x, y, z) atteinte par le bout de la patte
|
||||||
|
|
||||||
|
- Sliders: les angles des trois moteurs (alpha, beta, gamma)
|
||||||
|
- Entrées: alpha, beta, gamma, la cible (radians) des moteurs
|
||||||
|
- Sortie: un tableau contenant la position atteinte par le bout de la patte (en mètres)
|
||||||
|
"""
|
||||||
|
|
||||||
|
return 0, 0, 0
|
||||||
|
|
||||||
|
|
||||||
|
from math import *
|
||||||
|
|
||||||
l1h = 0.049
|
l1h = 0.049
|
||||||
l1v = 0.032
|
l1v = 0.032
|
||||||
l1 = l1h # this is not the real distance as it's not the one needed to calculate position.
|
l1 = l1h
|
||||||
|
|
||||||
# length between motor 2 and motor 3.
|
|
||||||
l2h = 0.0605
|
l2h = 0.0605
|
||||||
l2v = 0.02215
|
l2v = 0.02215
|
||||||
l2 = sqrt(l2h ** 2 + l2v ** 2)
|
l2 = sqrt(l2h ** 2 + l2v ** 2)
|
||||||
|
|
||||||
# length between motor 3 and end of the leg.
|
|
||||||
l3h = 0.012
|
l3h = 0.012
|
||||||
l3v = 0.093
|
l3v = 0.093
|
||||||
l3 = sqrt(l3h ** 2 + l3v ** 2)
|
l3 = sqrt(l3h ** 2 + l3v ** 2)
|
||||||
|
|
||||||
# offset of the 'head', the legs isolated at each end.
|
|
||||||
tete_x = 0.095
|
tete_x = 0.095
|
||||||
|
|
||||||
# offset of the legs at the side.
|
|
||||||
patte_y = 0.032
|
patte_y = 0.032
|
||||||
patte_x = 0.079
|
patte_x = 0.079
|
||||||
num_patte = 6
|
|
||||||
|
|
||||||
# Logs functions
|
|
||||||
legsLogger = setup_logger("legs", LEGS_LOG_LEVEL)
|
|
||||||
controllerLogger = setup_logger("Controller", CONTROLLER_LOG_LEVEL)
|
|
||||||
|
|
||||||
# Initialize controller
|
|
||||||
xbox = Xbox(controllerLogger)
|
|
||||||
CONTROLLER_MODE = xbox.initialized
|
|
||||||
xbox.mode_count = 4
|
|
||||||
|
|
||||||
neutral_position = np.array([
|
|
||||||
[0.1, 0.15, -0.15],
|
|
||||||
[-0.1, 0.15, -0.15],
|
|
||||||
[-0.2, -0.00, -0.15],
|
|
||||||
[-0.1, -0.15, -0.15],
|
|
||||||
[0.1, -0.15, -0.15],
|
|
||||||
[0.2, 0, -0.15]
|
|
||||||
])
|
|
||||||
|
|
||||||
|
|
||||||
def interpol2(point2, point1, t):
|
|
||||||
x1, y1, z1 = point1
|
|
||||||
x2, y2, z2 = point2
|
|
||||||
return t * x1 + (1 - t) * x2, t * y1 + (1 - t) * y2, t * z1 + (1 - t) * z2
|
|
||||||
|
|
||||||
|
|
||||||
def get_current_step(t, step_duration, movement_duration):
|
|
||||||
time_passed = 0
|
|
||||||
for i in range(len(step_duration)):
|
|
||||||
time_passed += step_duration[i]
|
|
||||||
if t % movement_duration < time_passed:
|
|
||||||
return i
|
|
||||||
|
|
||||||
|
|
||||||
def get_current_step_advancement(t, movement_duration, step_duration, current_step):
|
|
||||||
current_step = get_current_step(t, step_duration, movement_duration)
|
|
||||||
t = t % movement_duration
|
|
||||||
for i in range(0, current_step):
|
|
||||||
t -= step_duration[i]
|
|
||||||
return t / step_duration[current_step]
|
|
||||||
|
|
||||||
|
|
||||||
def inverse(x, y, z):
|
def inverse(x, y, z):
|
||||||
"""
|
"""
|
||||||
|
python simulator.py -m inverse
|
||||||
|
|
||||||
|
Le robot est figé en l'air, on ne contrôle qu'une patte
|
||||||
|
|
||||||
|
Reçoit en argument une position cible (x, y, z) pour le bout de la patte, et produit les angles
|
||||||
|
(alpha, beta, gamma) pour que la patte atteigne cet objectif
|
||||||
|
|
||||||
|
- Sliders: la position cible x, y, z du bout de la patte
|
||||||
|
- Entrée: x, y, z, une position cible dans le repère de la patte (mètres), provenant du slider
|
||||||
|
- Sortie: un tableau contenant les 3 positions angulaires cibles (en radians)
|
||||||
"""
|
"""
|
||||||
# Dimensions (m)
|
# Dimensions (m)
|
||||||
z += l1v
|
z += l1v
|
||||||
@ -106,9 +112,53 @@ def inverse(x, y, z):
|
|||||||
# return [0, angle1 , angle1 -pi/2 + atan(l3h/l3v)]
|
# return [0, angle1 , angle1 -pi/2 + atan(l3h/l3v)]
|
||||||
|
|
||||||
|
|
||||||
|
def draw(t):
|
||||||
|
"""
|
||||||
|
python simulator.py -m draw
|
||||||
|
|
||||||
|
Le robot est figé en l'air, on ne contrôle qu'une patte
|
||||||
|
|
||||||
|
Le but est, à partir du temps donné, de suivre une trajectoire de triangle. Pour ce faire, on
|
||||||
|
utilisera une interpolation linéaire entre trois points, et la fonction inverse précédente.
|
||||||
|
|
||||||
|
- Entrée: t, le temps (secondes écoulées depuis le début)
|
||||||
|
- Sortie: un tableau contenant les 3 positions angulaires cibles (en radians)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def interpol(x2, y2, z2, x1, y1, z1, t):
|
||||||
|
return t * x1 + (1 - t) * x2, t * y1 + (1 - t) * y2, t * z1 + (1 - t) * z2
|
||||||
|
|
||||||
|
p1 = [0.15, 0, 0]
|
||||||
|
p2 = [0.1, 0.1, 0]
|
||||||
|
p3 = [0.1, 0, 0.05]
|
||||||
|
|
||||||
|
positions = [p1, p2, p3]
|
||||||
|
|
||||||
|
ratio = (t % 1)
|
||||||
|
partie = floor((t % 3))
|
||||||
|
partie2 = (partie + 1) % 3
|
||||||
|
# print(f"partie: {partie}, partie2: {partie2}")
|
||||||
|
wanted_origin_x, wanted_origin_y, wanted_origin_z = positions[partie][0], positions[partie][1], positions[partie][
|
||||||
|
2],
|
||||||
|
wanted_dest_x, wanted_dest_y, wanted_dest_z = positions[partie2][0], positions[partie2][1], positions[partie2][2],
|
||||||
|
# print(wanted_origin_x, wanted_origin_y, wanted_origin_z)
|
||||||
|
# print(wanted_dest_x, wanted_dest_y, wanted_dest_z)
|
||||||
|
# print(t)
|
||||||
|
wanted_x, wanted_y, wanted_z = interpol(wanted_origin_x, wanted_origin_y, wanted_origin_z, wanted_dest_x,
|
||||||
|
wanted_dest_y, wanted_dest_z, ratio)
|
||||||
|
|
||||||
|
return inverse(wanted_x, wanted_y, wanted_z)
|
||||||
|
|
||||||
|
|
||||||
def legs(targets_robot):
|
def legs(targets_robot):
|
||||||
"""
|
"""
|
||||||
takes a list of target and offsets it to be in the legs referential
|
python simulator.py -m legs
|
||||||
|
|
||||||
|
Le robot est figé en l'air, on contrôle toute les pattes
|
||||||
|
|
||||||
|
- Sliders: les 12 coordonnées (x, y, z) du bout des 4 pattes
|
||||||
|
- Entrée: des positions cibles (tuples (x, y, z)) pour le bout des 4 pattes
|
||||||
|
- Sortie: un tableau contenant les 12 positions angulaires cibles (radian) pour les moteurs
|
||||||
"""
|
"""
|
||||||
|
|
||||||
targets = [0] * 18
|
targets = [0] * 18
|
||||||
@ -137,9 +187,36 @@ def legs(targets_robot):
|
|||||||
return targets
|
return targets
|
||||||
|
|
||||||
|
|
||||||
def naive_walk(t, speed_x, speed_y):
|
def interpol2(point2, point1, t):
|
||||||
|
x1, y1, z1 = point1
|
||||||
|
x2, y2, z2 = point2
|
||||||
|
return t * x1 + (1 - t) * x2, t * y1 + (1 - t) * y2, t * z1 + (1 - t) * z2
|
||||||
|
|
||||||
|
|
||||||
|
def walkV1(t, speed_x, speed_y, speed_rotation):
|
||||||
|
"""
|
||||||
|
python simulator.py -m walk
|
||||||
|
|
||||||
|
Le but est d'intégrer tout ce que nous avons vu ici pour faire marcher le robot
|
||||||
|
|
||||||
|
- Sliders: speed_x, speed_y, speed_rotation, la vitesse cible du robot
|
||||||
|
- Entrée: t, le temps (secondes écoulées depuis le début)
|
||||||
|
speed_x, speed_y, et speed_rotation, vitesses cibles contrôlées par les sliders
|
||||||
|
- Sortie: un tableau contenant les 12 positions angulaires cibles (radian) pour les moteurs
|
||||||
|
"""
|
||||||
|
# t = t*speed_x * 20
|
||||||
|
num_patte = 6
|
||||||
slider_max = 0.200
|
slider_max = 0.200
|
||||||
|
|
||||||
|
neutral_position = np.array([
|
||||||
|
[0.1, 0.15, -0.15],
|
||||||
|
[-0.1, 0.15, -0.15],
|
||||||
|
[-0.2, -0.00, -0.15],
|
||||||
|
[-0.1, -0.15, -0.15],
|
||||||
|
[0.1, -0.15, -0.15],
|
||||||
|
[0.2, 0, -0.15]
|
||||||
|
])
|
||||||
|
|
||||||
real_position = np.copy(neutral_position)
|
real_position = np.copy(neutral_position)
|
||||||
|
|
||||||
movement_x = np.array([
|
movement_x = np.array([
|
||||||
@ -169,15 +246,36 @@ def naive_walk(t, speed_x, speed_y):
|
|||||||
assert len(
|
assert len(
|
||||||
step_duration) == step_count, f"all movements steps must have a length, currently, {len(step_duration)}/{step_count} have them"
|
step_duration) == step_count, f"all movements steps must have a length, currently, {len(step_duration)}/{step_count} have them"
|
||||||
|
|
||||||
|
def get_current_step(t):
|
||||||
|
time_passed = 0
|
||||||
|
for i in range(len(step_duration)):
|
||||||
|
time_passed += step_duration[i]
|
||||||
|
if t % movement_duration < time_passed:
|
||||||
|
return i
|
||||||
|
|
||||||
|
def get_current_step_advancement(t):
|
||||||
|
current_step = get_current_step(t)
|
||||||
|
t = t % movement_duration
|
||||||
|
for i in range(0, current_step):
|
||||||
|
t -= step_duration[i]
|
||||||
|
return t / step_duration[current_step]
|
||||||
|
|
||||||
def get_next_step(t):
|
def get_next_step(t):
|
||||||
return floor((get_current_step(t, step_duration, movement_duration) + 1) % step_count)
|
return floor((get_current_step(t) + 1) % step_count)
|
||||||
|
|
||||||
|
def rotate(patte):
|
||||||
|
return [1, -1, 0, -1, 1, 0][
|
||||||
|
patte] * movement_x # + [-1, 1, -1, 1][patte] * movement_y # mettre des 0 partout sur le Y fait une très belle rotation
|
||||||
|
|
||||||
|
def normalize(matrix, slider_max, speed):
|
||||||
|
return (matrix / slider_max) * speed
|
||||||
|
|
||||||
offsets = np.array([0, 1 / 3, 2 / 3, 0, 1 / 3, 2 / 3]) * movement_duration # offset between each leg
|
offsets = np.array([0, 1 / 3, 2 / 3, 0, 1 / 3, 2 / 3]) * movement_duration # offset between each leg
|
||||||
assert len(offsets) == num_patte, f"all offsets must be set, currently, {len(offsets)}/{num_patte} have them"
|
assert len(offsets) == num_patte, f"all offsets must be set, currently, {len(offsets)}/{num_patte} have them"
|
||||||
|
|
||||||
for patte in range(num_patte):
|
for patte in range(num_patte):
|
||||||
time = t + offsets[patte]
|
time = t + offsets[patte]
|
||||||
mov_index_start = get_current_step(time, step_duration, movement_duration)
|
mov_index_start = get_current_step(time)
|
||||||
mov_index_end = get_next_step(time)
|
mov_index_end = get_next_step(time)
|
||||||
|
|
||||||
mov_start_x = normalize(movement_x[mov_index_start], slider_max, speed_x)
|
mov_start_x = normalize(movement_x[mov_index_start], slider_max, speed_x)
|
||||||
@ -189,16 +287,17 @@ def naive_walk(t, speed_x, speed_y):
|
|||||||
mov_start_z = movement_z[mov_index_start]
|
mov_start_z = movement_z[mov_index_start]
|
||||||
mov_end_z = movement_z[mov_index_end]
|
mov_end_z = movement_z[mov_index_end]
|
||||||
|
|
||||||
mov_start = neutral_position[patte] + mov_start_z + mov_start_x + mov_start_y
|
mov_start_rotate = normalize(rotate(patte)[mov_index_start], 0.5, speed_rotation)
|
||||||
mov_end = neutral_position[patte] + mov_end_z + mov_end_x + mov_end_y
|
mov_end_rotate = normalize(rotate(patte)[mov_index_end], 0.5, speed_rotation)
|
||||||
|
|
||||||
|
mov_start = neutral_position[patte] + mov_start_z + mov_start_x + mov_start_y + mov_start_rotate
|
||||||
|
mov_end = neutral_position[patte] + mov_end_z + mov_end_x + mov_end_y + mov_end_rotate
|
||||||
|
|
||||||
(real_position[patte][0],
|
(real_position[patte][0],
|
||||||
real_position[patte][1],
|
real_position[patte][1],
|
||||||
real_position[patte][2]) = interpol2(mov_start, mov_end,
|
real_position[patte][2]) = interpol2(mov_start, mov_end, get_current_step_advancement(time))
|
||||||
get_current_step_advancement(time, movement_duration, step_duration,
|
print(
|
||||||
mov_index_start))
|
f"[{patte}] [{get_current_step(time)}->{get_next_step(time)}], start: {mov_start}, end: {mov_end}, current ({real_position[patte][0]}, {real_position[patte][1]}, {real_position[patte][2]})")
|
||||||
legsLogger.debug(
|
|
||||||
f"[{patte}] [{mov_index_start}->{mov_index_end}], start: {mov_start}, end: {mov_end}, current ({real_position[patte][0]}, {real_position[patte][1]}, {real_position[patte][2]})")
|
|
||||||
|
|
||||||
return legs(real_position)
|
return legs(real_position)
|
||||||
|
|
||||||
@ -212,10 +311,6 @@ def translate(tx, ty, tz):
|
|||||||
])
|
])
|
||||||
|
|
||||||
|
|
||||||
def normalize(matrix, slider_max, speed):
|
|
||||||
return (matrix / slider_max) * speed
|
|
||||||
|
|
||||||
|
|
||||||
def Rx(alpha):
|
def Rx(alpha):
|
||||||
return np.array([
|
return np.array([
|
||||||
[1.0, 0.0, 0.0, 0.0],
|
[1.0, 0.0, 0.0, 0.0],
|
||||||
@ -243,39 +338,38 @@ def Rz(alpha):
|
|||||||
])
|
])
|
||||||
|
|
||||||
|
|
||||||
def walk(t, sx, sy, sr):
|
# multiplication de matrices: @
|
||||||
xboxdata = xbox.get_data()
|
# gauche: monde, droite: repere
|
||||||
max_slider = 0.200
|
|
||||||
controllerLogger.debug(xboxdata)
|
|
||||||
if xbox.mode == 0:
|
|
||||||
return static()
|
|
||||||
elif xbox.mode == 1:
|
|
||||||
return jump(xboxdata["y2"])
|
|
||||||
elif xbox.mode == 2:
|
|
||||||
return dino_naive(t, max_slider * xboxdata["y1"], max_slider * xboxdata["x1"], max_slider * xboxdata["y2"],
|
|
||||||
max_slider * xboxdata["x2"], max_slider * (xboxdata["r2"] + 1))
|
|
||||||
elif xbox.mode == 3:
|
|
||||||
return dev(t, max_slider * xboxdata["y1"], max_slider * xboxdata["x1"], max_slider * xboxdata["y2"],
|
|
||||||
max_slider * xboxdata["x2"])
|
|
||||||
else:
|
|
||||||
return naive_walk(t, max_slider * xboxdata["x1"], max_slider * xboxdata["y1"])
|
|
||||||
|
|
||||||
|
def walkV2(t, speed_x, speed_y, speed_rotation):
|
||||||
def static():
|
|
||||||
return legs(neutral_position)
|
|
||||||
|
|
||||||
|
|
||||||
# Walk V2
|
|
||||||
def dev(t, x1, y1, x2, y2):
|
|
||||||
def get_rotation_center(speed_x, speed_y, theta_point):
|
def get_rotation_center(speed_x, speed_y, theta_point):
|
||||||
direction = np.array([-speed_y, speed_x])
|
direction = np.array([-speed_y, speed_x])
|
||||||
return direction / max(0.001, theta_point)
|
return direction / max(0.001, theta_point)
|
||||||
|
|
||||||
x0, y0 = get_rotation_center(x1, y1, x2)
|
x0, y0 = get_rotation_center(speed_x, speed_y, speed_rotation)
|
||||||
|
|
||||||
print(x0, y0)
|
print(x0, y0)
|
||||||
|
|
||||||
num_patte = 6
|
"""
|
||||||
|
python simulator.py -m walk
|
||||||
|
|
||||||
|
Le but est d'intégrer tout ce que nous avons vu ici pour faire marcher le robot
|
||||||
|
|
||||||
|
- Sliders: speed_x, speed_y, speed_rotation, la vitesse cible du robot
|
||||||
|
- Entrée: t, le temps (secondes écoulées depuis le début)
|
||||||
|
speed_x, speed_y, et speed_rotation, vitesses cibles contrôlées par les sliders
|
||||||
|
- Sortie: un tableau contenant les 12 positions angulaires cibles (radian) pour les moteurs
|
||||||
|
"""
|
||||||
|
# t = t*speed_x * 20
|
||||||
|
num_patte = 4
|
||||||
|
slider_max = 0.200
|
||||||
|
|
||||||
|
neutral_position = np.array([
|
||||||
|
[-0.06, 0.06, -0.13],
|
||||||
|
[-0.06, -0.06, -0.13],
|
||||||
|
[0.06, -0.06, -0.13], # [0.15, 0.15, -0.01],
|
||||||
|
[0.06, 0.06, -0.13]
|
||||||
|
])
|
||||||
|
|
||||||
real_position = np.copy(neutral_position)
|
real_position = np.copy(neutral_position)
|
||||||
|
|
||||||
@ -293,19 +387,31 @@ def dev(t, x1, y1, x2, y2):
|
|||||||
assert len(
|
assert len(
|
||||||
step_duration) == step_count, f"all movements steps must have a length, currently, {len(step_duration)}/{step_count} have them"
|
step_duration) == step_count, f"all movements steps must have a length, currently, {len(step_duration)}/{step_count} have them"
|
||||||
|
|
||||||
def get_next_step(t):
|
def get_current_step(t):
|
||||||
return floor((get_current_step(t, step_duration, movement_duration) + 1) % step_count)
|
time_passed = 0
|
||||||
|
for i in range(len(step_duration)):
|
||||||
|
time_passed += step_duration[i]
|
||||||
|
if t % movement_duration < time_passed:
|
||||||
|
return i
|
||||||
|
|
||||||
offsets = np.array([0, 1 / 2, 2 / 3, 0, 1 / 2, 2 / 3]) * movement_duration # offset between each leg
|
def get_current_step_advancement(t):
|
||||||
|
current_step = get_current_step(t)
|
||||||
|
t = t % movement_duration
|
||||||
|
for i in range(0, current_step):
|
||||||
|
t -= step_duration[i]
|
||||||
|
return t / step_duration[current_step]
|
||||||
|
|
||||||
|
def get_next_step(t):
|
||||||
|
return floor((get_current_step(t) + 1) % step_count)
|
||||||
|
|
||||||
|
offsets = np.array([0, 0.5, 0, 0.5]) * movement_duration # offset between each leg
|
||||||
assert len(offsets) == num_patte, f"all offsets must be set, currently, {len(offsets)}/{num_patte} have them"
|
assert len(offsets) == num_patte, f"all offsets must be set, currently, {len(offsets)}/{num_patte} have them"
|
||||||
|
|
||||||
for patte in range(num_patte):
|
for patte in range(num_patte):
|
||||||
time = t + offsets[patte]
|
time = t + offsets[patte]
|
||||||
mov_index_start = get_current_step(time, step_duration, movement_duration)
|
mov_index_start = get_current_step(time)
|
||||||
mov_index_end = get_next_step(time)
|
mov_index_end = get_next_step(time)
|
||||||
|
|
||||||
step_adv = get_current_step_advancement(t, movement_duration, step_duration, mov_index_start)
|
|
||||||
|
|
||||||
mov_start_z = movement_z[mov_index_start]
|
mov_start_z = movement_z[mov_index_start]
|
||||||
mov_end_z = movement_z[mov_index_end]
|
mov_end_z = movement_z[mov_index_end]
|
||||||
|
|
||||||
@ -314,11 +420,11 @@ def dev(t, x1, y1, x2, y2):
|
|||||||
|
|
||||||
(real_position[patte][0],
|
(real_position[patte][0],
|
||||||
real_position[patte][1],
|
real_position[patte][1],
|
||||||
real_position[patte][2]) = interpol2(mov_start, mov_end, step_adv)
|
real_position[patte][2]) = interpol2(mov_start, mov_end, get_current_step_advancement(time))
|
||||||
|
|
||||||
dthteta = x2 * 2
|
dthteta = speed_rotation * 2
|
||||||
|
|
||||||
theta = dthteta * (step_adv - 0.5)
|
theta = dthteta * (get_current_step_advancement(time) - 0.5)
|
||||||
# theta = 0
|
# theta = 0
|
||||||
print(theta)
|
print(theta)
|
||||||
# rotating the vector
|
# rotating the vector
|
||||||
@ -334,95 +440,13 @@ def dev(t, x1, y1, x2, y2):
|
|||||||
real_position[patte][0] = x2
|
real_position[patte][0] = x2
|
||||||
real_position[patte][1] = y2
|
real_position[patte][1] = y2
|
||||||
|
|
||||||
|
# print(
|
||||||
|
# f"[{patte}] [{get_current_step(time)}->{get_next_step(time)}], start: {mov_start}, end: {mov_end}, current ({real_position[patte][0]}, {real_position[patte][1]}, {real_position[patte][2]})")
|
||||||
|
|
||||||
return legs(real_position)
|
return legs(real_position)
|
||||||
|
|
||||||
|
|
||||||
def jump(sy):
|
walk = walkV1
|
||||||
offset = np.array([
|
|
||||||
[0, 0, -0.15],
|
|
||||||
[0, 0, -0.15],
|
|
||||||
[0, 0, -0.15],
|
|
||||||
[0, 0, -0.15],
|
|
||||||
[0, 0, -0.15],
|
|
||||||
[0, 0, -0.15]
|
|
||||||
])
|
|
||||||
offset *= sy
|
|
||||||
return legs(neutral_position + offset)
|
|
||||||
|
|
||||||
|
|
||||||
# based on walk V1
|
|
||||||
def dino_naive(t, speed_x, speed_y, hz, hy, hx):
|
|
||||||
slider_max = 0.200
|
|
||||||
|
|
||||||
real_position = np.copy(neutral_position)
|
|
||||||
|
|
||||||
movement_x = np.array([
|
|
||||||
[0.00, 0, 0],
|
|
||||||
[0.04, 0, 0],
|
|
||||||
[-0.04, 0, 0],
|
|
||||||
])
|
|
||||||
|
|
||||||
movement_y = np.array([
|
|
||||||
[0.0, 0, 0],
|
|
||||||
[0, 0.04, 0],
|
|
||||||
[0, -0.04, 0],
|
|
||||||
])
|
|
||||||
|
|
||||||
movement_z = np.array([
|
|
||||||
[0, 0, 0.08],
|
|
||||||
[0, 0, -0.02],
|
|
||||||
[0, 0, -0.02]
|
|
||||||
])
|
|
||||||
|
|
||||||
# duration of each step of the movement
|
|
||||||
step_duration = np.array([0.05, 0.3, 0.05])
|
|
||||||
|
|
||||||
step_count = len(movement_z)
|
|
||||||
movement_duration = np.sum(step_duration)
|
|
||||||
|
|
||||||
assert len(
|
|
||||||
step_duration) == step_count, f"all movements steps must have a length, currently, {len(step_duration)}/{step_count} have them"
|
|
||||||
|
|
||||||
def get_next_step(t):
|
|
||||||
return floor((get_current_step(t, step_duration, movement_duration) + 1) % step_count)
|
|
||||||
|
|
||||||
offsets = np.array([0, 1 / 3, 2 / 3, 0, 1 / 3, 2 / 3]) * movement_duration # offset between each leg
|
|
||||||
assert len(offsets) == num_patte, f"all offsets must be set, currently, {len(offsets)}/{num_patte} have them"
|
|
||||||
|
|
||||||
for patte in range(num_patte):
|
|
||||||
if patte in [2, 5]:
|
|
||||||
continue
|
|
||||||
time = t + offsets[patte]
|
|
||||||
mov_index_start = get_current_step(time, step_duration, movement_duration)
|
|
||||||
mov_index_end = get_next_step(time)
|
|
||||||
|
|
||||||
mov_start_x = normalize(movement_x[mov_index_start], slider_max, speed_x)
|
|
||||||
mov_end_x = normalize(movement_x[mov_index_end], slider_max, speed_x)
|
|
||||||
|
|
||||||
mov_start_y = normalize(movement_y[mov_index_start], slider_max, speed_y)
|
|
||||||
mov_end_y = normalize(movement_y[mov_index_end], slider_max, speed_y)
|
|
||||||
|
|
||||||
mov_start_z = movement_z[mov_index_start]
|
|
||||||
mov_end_z = movement_z[mov_index_end]
|
|
||||||
|
|
||||||
mov_start = neutral_position[patte] + mov_start_z + mov_start_x + mov_start_y
|
|
||||||
mov_end = neutral_position[patte] + mov_end_z + mov_end_x + mov_end_y
|
|
||||||
|
|
||||||
(real_position[patte][0],
|
|
||||||
real_position[patte][1],
|
|
||||||
real_position[patte][2]) = interpol2(mov_start, mov_end,
|
|
||||||
get_current_step_advancement(time, movement_duration, step_duration,
|
|
||||||
mov_index_start))
|
|
||||||
|
|
||||||
real_position[2][2] = -0.1
|
|
||||||
real_position[2][0] = -0.28
|
|
||||||
|
|
||||||
real_position[5][2] = 0.05 + hz
|
|
||||||
real_position[5][0] = 0.25 + hx
|
|
||||||
real_position[5][1] = hy
|
|
||||||
print(hx)
|
|
||||||
return legs(real_position)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
print("N'exécutez pas ce fichier, mais simulator.py")
|
print("N'exécutez pas ce fichier, mais simulator.py")
|
||||||
|
47
logs.py
47
logs.py
@ -1,47 +0,0 @@
|
|||||||
import logging
|
|
||||||
|
|
||||||
|
|
||||||
class ColorFormatter(logging.Formatter):
|
|
||||||
"""Custom formatter with colored output based on log level"""
|
|
||||||
|
|
||||||
# ANSI color codes
|
|
||||||
GREY = "\x1b[38;21m"
|
|
||||||
GREEN = "\x1b[92m"
|
|
||||||
YELLOW = "\x1b[93m"
|
|
||||||
RED = "\x1b[91m"
|
|
||||||
BOLD_RED = "\x1b[31;1m"
|
|
||||||
RESET = "\x1b[0m"
|
|
||||||
|
|
||||||
# Format including function name
|
|
||||||
FORMAT = "%(asctime)s | %(funcName)s | %(message)s"
|
|
||||||
|
|
||||||
FORMATS = {
|
|
||||||
logging.DEBUG: GREY + FORMAT + RESET,
|
|
||||||
logging.INFO: GREEN + FORMAT + RESET,
|
|
||||||
logging.WARNING: YELLOW + FORMAT + RESET,
|
|
||||||
logging.ERROR: RED + FORMAT + RESET,
|
|
||||||
logging.CRITICAL: BOLD_RED + FORMAT + RESET
|
|
||||||
}
|
|
||||||
|
|
||||||
def format(self, record):
|
|
||||||
log_format = self.FORMATS.get(record.levelno)
|
|
||||||
formatter = logging.Formatter(log_format)
|
|
||||||
return formatter.format(record)
|
|
||||||
|
|
||||||
|
|
||||||
def setup_logger(name, level=logging.INFO):
|
|
||||||
"""Set up a logger with the custom color formatter"""
|
|
||||||
logger = logging.getLogger(name)
|
|
||||||
logger.setLevel(level)
|
|
||||||
|
|
||||||
# Create console handler
|
|
||||||
console_handler = logging.StreamHandler()
|
|
||||||
console_handler.setLevel(level)
|
|
||||||
|
|
||||||
# Add formatter to console handler
|
|
||||||
console_handler.setFormatter(ColorFormatter())
|
|
||||||
|
|
||||||
# Add console handler to logger
|
|
||||||
logger.addHandler(console_handler)
|
|
||||||
|
|
||||||
return logger
|
|
57
xbox.py
57
xbox.py
@ -1,57 +0,0 @@
|
|||||||
import pygame
|
|
||||||
|
|
||||||
|
|
||||||
class Xbox:
|
|
||||||
def __init__(self, controllerLogger):
|
|
||||||
self.logger = controllerLogger
|
|
||||||
self.mode_count = 2
|
|
||||||
self.mode = 0
|
|
||||||
pygame.init()
|
|
||||||
self.controllers = []
|
|
||||||
for i in range(0, pygame.joystick.get_count()):
|
|
||||||
self.controllers.append(pygame.joystick.Joystick(i))
|
|
||||||
self.controllers[-1].init()
|
|
||||||
self.logger.info(f"Detected controller {self.controllers[-1].get_name()}")
|
|
||||||
|
|
||||||
if len(self.controllers) == 0:
|
|
||||||
self.logger.critical("No controllers detected. Can't initialize remote control.")
|
|
||||||
self.initialized = True
|
|
||||||
else:
|
|
||||||
self.initialized = False
|
|
||||||
self.data = {"x1": 0, "x2": 0, "y1": 0, "y2": 0, "up": 0, "down": 0, "left": 0, "right": 0, "r1": 0, "r2": 0,
|
|
||||||
"r3": 0,
|
|
||||||
"l1": 0, "l2": 0, "l3": 0}
|
|
||||||
|
|
||||||
def get_data(self):
|
|
||||||
for event in pygame.event.get():
|
|
||||||
event = dict(event.dict)
|
|
||||||
keys = event.keys()
|
|
||||||
try:
|
|
||||||
if "axis" in keys:
|
|
||||||
axis = event["axis"]
|
|
||||||
if axis in [1, 4]:
|
|
||||||
value = -event["value"]
|
|
||||||
if abs(value) < 0.1:
|
|
||||||
value = 0
|
|
||||||
self.data[{0: "x1", 1: "y1", 4: "y2", 3: "x2", 5: "r2", 2: "l2"}[event["axis"]]] = value
|
|
||||||
else:
|
|
||||||
value = event["value"]
|
|
||||||
if abs(value) < 0.1:
|
|
||||||
value = 0
|
|
||||||
self.data[{0: "x1", 1: "y1", 4: "y2", 3: "x2", 5: "r2", 2: "l2"}[event["axis"]]] = value
|
|
||||||
elif "button" in keys:
|
|
||||||
pass
|
|
||||||
elif "joy" in keys: # To manage arrows
|
|
||||||
data = event["value"][0]
|
|
||||||
if data != 0:
|
|
||||||
self.mode += data
|
|
||||||
self.mode %= self.mode_count
|
|
||||||
self.logger.info(f"Switched mode ({data}). New mode: {self.mode}")
|
|
||||||
else:
|
|
||||||
print(event)
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(event)
|
|
||||||
print(e)
|
|
||||||
|
|
||||||
return self.data
|
|
Loading…
x
Reference in New Issue
Block a user