TIPE/c/hough_multi.c

162 lines
3.8 KiB
C

// Objectif : utiliser du multithreading pour améliorer la rapidité
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <pthread.h>
int PRECISION = 10;
char* filepath = "./in.txt";
int COLONNES;
int LIGNES;
int DISTANCE;
int* IMAGE;
int* ESPACE;
// taille du fichier. update global variables
int* taille(char* filepath){
FILE* ptr;
char ch;
ptr = fopen(filepath, "r");
if (NULL == ptr) {
printf("file can't be opened \n");
}
int lignes = 0;
int colonnes = 1;
int end = 1;
while (!feof(ptr)) {
ch = fgetc(ptr);
if (ch == '\n'){
lignes ++;
end = 0;
}
else if(ch == ',' && end) {
colonnes ++;
}
}
LIGNES = lignes;
COLONNES = colonnes;
DISTANCE = (int)round(sqrt(COLONNES *COLONNES + LIGNES *LIGNES));
}
//retourne la matrice
int* read_img(char* filepath){
int* matrice = malloc((COLONNES * LIGNES) * sizeof(int));
FILE* ptr;
char ch;
ptr = fopen(filepath, "r");
if (NULL == ptr) {
printf("file can't be opened \n");
}
int c = 0;
while (!feof(ptr)) {
ch = fgetc(ptr);
if (feof(ptr)){
fclose(ptr);
IMAGE = matrice;
return NULL;
}
if (ch == '\n'){
c++;
}
else if(ch == ',') {
c++;
}
else if (ch == ' '){}
else {
//printf("%c\n", ch);
matrice[c] *= 10;
matrice[c] += (int)ch - 48;
}
}
}
double rho(int x, int y, double theta){
return(x * cos(theta) + y * sin(theta));
}
void* espace_hough(void* arg){
int thread = *(int*)arg; // numero du thread equivalent a la zone de degré qui va être parcourue
int v_rho;
double theta_rad;
for (int y = 0; y < LIGNES; y++){
for (int x = 0; x < COLONNES; x++){
if (IMAGE[y*COLONNES + x] > 250){
for (int theta_deg = 360 * thread ; theta_deg < 360 * (thread+1) ;theta_deg ++){
theta_rad = theta_deg /(180.0 * PRECISION) * M_PI;
v_rho = rho(x, y, theta_rad); // determine R
if (v_rho > 0){
ESPACE[v_rho * 360 * PRECISION + theta_deg] += 1;
}
}
}
}
}
return(NULL);
}
void save_file(int* mat, int PRECISION){
FILE *ptr;
ptr = fopen("./out.txt","w");
for (int j = 0; j < DISTANCE; j++){
for (int i = 0; i<360 * PRECISION; i++){
fprintf(ptr, "%d", mat[j*360 * PRECISION + i]);
if (i != 360 * PRECISION - 1){
fprintf(ptr, "%s",",");
}
}
fprintf(ptr, "%s","\n");
}
fclose(ptr);
}
int main(int argc, char *argv[])
{
if (argc == 2){
PRECISION = strtol(argv[1], NULL, 10);
}
taille(filepath);
printf("Precision : %d\nLignes : %d\nColonnes : %d\nnombre de pixels : %d\nDistance : %d\n", PRECISION, LIGNES, COLONNES,(LIGNES)*(COLONNES), DISTANCE);
read_img(filepath);
int* mat_hough = malloc(360 * PRECISION * DISTANCE * sizeof(int));
for (int i = 0; i<360 * DISTANCE * PRECISION; i++){
mat_hough[i] = 0;
}
ESPACE = mat_hough;
pthread_t* t = (pthread_t*)malloc(sizeof(pthread_t)*(PRECISION));
int* tab_int = malloc(PRECISION * sizeof(int));
for(int i = 0; i < PRECISION; i++){
tab_int[i] = i;
}
for (int i=0; i < PRECISION; i++) {
pthread_create(&t[i], NULL, espace_hough, (void*)&tab_int[i]);
}
for (int i=0; i < PRECISION; i++) {
pthread_join(t[i], NULL);
}
save_file(ESPACE, PRECISION);
return 0;
}